ATS Lycée Le Dantec

TD - Th2

Donnée utile :

- constante des gaz parfaits : $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

I. Eau chaude

Calculer la variation d'énergie interne de 100 g d'eau lorsqu'on la chauffe de la température $T_1 = 20$ °C à la température 70°C.

II. Refroidissement d'un gaz parfait

De l'air, assimilé à un gaz parfait est contenu dans une bouteille en plastique, fermée, de volume $V_i = 1,0$ L sous la pression $P_0 = 1,0$ bar et à la température $T_i = 20$ °C. La température diminue ensuite de 15°C.

- 1. Calculer la quantité de matière n contenue dans la bouteille.
- 2. On suppose que la pression finale est toujours $P_0 = 1,0$ bar. Calculer le volume final V_f de la bouteille? Commenter.
- 3. Calculer la variation d'énergie interne du gaz.

III. Pression de pneumatiques

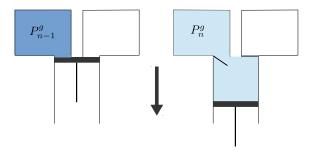
En hiver, par une température extérieure de -10° C, un automobiliste règle la pression de ses pneus à 2,0 atm, pression relative préconisée par le constructeur. Cette valeur est affichée sur un manomètre qui mesure l'écart entre la pression des pneumatiques et la pression atmosphérique. On rappelle que 1 atm= $1,013.10^{5}$ Pa.

- 1. Quelle serait l'indication du manomètre en été à 30°C? On suppose que le volume des pneus ne varie pas et qu'il n'y a aucune fuite au niveau de ce dernier.
- 2. Calculer la variation relative de pression due au changement de température. Conclure, sachant que cet écart ne doit pas dépasser 10%.

IV. Mélange de gaz

Un mélange gazeux contient 15 g de monoxyde de carbone CO et 15 g de dioxyde de carbone CO₂. La pression totale est $P = 5, 0.10^4$ Pa.

Quelles sont les pressions partielles de monoxyde de carbone et de dioxyde de carbone?


Données : masse molaire de l'oxygène $M(O) = 16 \text{ g.mol}^{-1}$ masse molaire du carbone $M(C) = 12 \text{ g.mol}^{-1}$. ATS Lycée Le Dantec

V. Étude d'une pompe

Deux réservoirs, de même volume V, sont mis en communication par une pompe dont le cylindre a un volume maximal V_C . À l'instant initial, les deux réservoirs contiennent deux gaz parfaits identiques à la même pression P_0 et à la même température T_0 . Le piston est initialement en position haute, de telle sorte que le volume du cylindre est nul au début de l'expérience.

À la descente du piston, la soupape de gauche S_g est ouverte et la soupape de droite S_d est fermée. À la remontée du piston, la soupape S_g est fermée et la soupape S_d est ouverte.

On note P_n^g et P_n^d les pressions respectivement dans le réservoir de gauche et dans le réservoir de droite après n allers-retours du piston, depuis sa position initiale. On suppose que toutes les transformations s'effectuent à température constante et que le système constitué par le gaz contenu dans les deux réservoirs est fermé.

- 1. En utilisant une loi de conservation, établir une relation entre P_n^g , P_n^d et P_0 .
- 2. Quelle est la relation entre P_{n-1}^g et P_n^g ? En déduire les expressions de P_n^g puis de P_n^d en fonction de P_0 , V et V_C .