ATS Lycée Le Dantec

PROGRAMME DE COLLE DE PHYSIQUE

Semaine du 23/09 au 28/09

Analyse dimensionnelle (cours + exercices)

 $Contenu\ du\ cours:$

- Grandeur mesurable. Unité de mesure
- Lois physiques et unités dérivées. Système d'unités.
- Système SI: unités de bases et unités dérivées
- Équations aux dimensions.

Bilan des compétences attendues :

- connaître les unités de bases du système SI
- savoir exprimer une unité dérivée en fonction des unités de base à l'aide des lois physiques ou des formules fournies (voir cours p4)
- savoir effectuer des conversions d'unité
- savoir établir une équation aux dimensions (voir exemple de cours p5 + ex 7 et 8 du TD)
- savoir vérifier l'homogénéité d'une formule
- connaître les règles des chiffres significatifs
- connaître les expressions des surfaces et volumes rappelées dans le polycopié "Quelques formules utiles".

M1 - Observation d'un mouvement (cours + exercices)

- Notion de point matériel
- Référentiel : le mouvement d'un point matériel dépend du référentiel d'étude. En mécanique classique, on peut choisir une chronologie commune à tous les référentiels. Le choix d'un référentiel se réduit alors au choix du repère d'espace
- Référentiel galiléen : dans un référentiel galiléen une particule libre possède un mouvement rectiligne uniforme. Un référentiel terrestre (dont l'origine et les axes sont choisis fixes par rapport à la Terre) peut en général être considéré comme galiléen. Tout référentiel en translation rectiligne uniforme par rapport à un référentiel galiléen est lui même galiléen.
- Vitesse moyenne.
- Vitesse scalaire instantanée :
 - pour un mouvement suivant l'axe $Ox: v = \dot{x}$
 - pour un mouvement circulaire de rayon $R: v = R\dot{\theta} = R\omega$
- Savoir relier distance parcourue à l'aire sous la courbe de v(t).
- Énergie cinétique d'un point matériel dans un référentiel donné : $E_c = \frac{1}{2}mv^2$. On en déduit :
 - pour un mouvement suivant l'axe $Ox: E_c = \frac{1}{2}m\dot{x}^2$
 - pour un mouvement circulaire de rayon $R: E_c = \frac{1}{2}m(R\dot{\theta})^2 = \frac{1}{2}m(R\omega)^2$

Extrait du programme :

1. Observation d'un mouvement	
Point matériel	Citer des exemples de systèmes pouvant se ramener à l'étude de leur centre
	de masse.
Principe d'inertie	Citer quelques exemples d'expériences où les référentiels d'étude peuvent
	être considérés comme galiléens.
Énergie cinétique	Définir la vitesse et l'énergie cinétique d'un point matériel.

ATS Lycée Le Dantec

M2 - Énergie potentielle (cours + exercices)

- Notion de force et de travail d'une force. Travail moteur, travail résistant. Une force perpendiculaire au déplacement ne travaille pas.

- Connaître les quatre interactions fondamentales : interaction gravitationnelle, interaction électromagnétique, interaction faible et interaction forte.
- Force conservative, force non conservative :
 - savoir que le poids et la force élastique sont des forces conservatives
 - énergie potentielle de pesanteur (pour un champ de pesanteur uniforme)

ulleténergie potentielle élastique associée à un ressort de constante de raideur k et de longueur à vide ℓ_0 :

$$E_{pe} = \frac{1}{2}k(\ell - \ell_0)^2 + cte$$

On suppose que l'énergie potentielle ne dépend que d'une seule variable x:

- À l'équilibre $\left(\frac{\mathrm{d}E_p}{\mathrm{d}x}\right)_{x=x_e} = 0.$
- Si E_p est minimale en $x=x_e$ alors l'équilibre est stable. Si E_p est maximale en $x=x_e$ alors l'équilibre est instable.
- Mathématiquement

Si
$$\left(\frac{\mathrm{d}^2 E_p}{\mathrm{d}x^2}\right)_{x=x_e} > 0$$
 alors l'équilibre est stable.
Si $\left(\frac{\mathrm{d}^2 E_p}{\mathrm{d}x^2}\right)_{x=x_e} < 0$ alors l'équilibre est instable.

Extrait du programme :

2. Interactions conservatives	
Énergie potentielle fonction d'une seule	Citer les expressions de l'énergie potentielle de pesanteur associée à un
variable spatiale	champ uniforme et de l'énergie potentielle élastique associée à un ressort.
Équilibre en référentiel galiléen	Identifier sur le graphe de l'énergie potentielle les éventuelles positions
	d'équilibre stable et instable. Exploiter d'autres situations où l'expression
	de l'énergie potentielle est fournie.

M3 - Énergie mécanique (cours + exercices)

- Énergie mécanique : $E_m = E_c + E_p$.
- Théorème de la puissance mécanique (TPM) : dans un référentiel galiléen $\frac{dE_m}{dt} = \mathcal{P}_{nc}$ avec \mathcal{P}_{nc} la puissance des forces non conservatives.
- Mouvement conservatif : si au cours d'un mouvement seules les forces conservatives travaillent alors $\mathcal{P}_{nc} = 0$ et $E_m = cte$.
- Mouvement conservatif à un degré de liberté. Analyse graphique du graphe de $E_p(x)$: le mouvement n'est possible que dans un domaine où $E_m \geqslant E_p$.
 - en déduire le caractère borné ou non d'une trajectoire pour une valeur de E_m donnée ainsi que la valeur de l'énergie cinétique en un point donné.
 - savoir déterminer graphiquement l'énergie minimale à fournir à un système pour qu'il échappe à un puits de potentiel.
- Mouvements conservatifs :
 - chute libre : utiliser la conservation de l'énergie mécanique pour calculer la vitesse atteinte au bout d'une hauteur de chute h $(v = \sqrt{2gh})$.

ATS Lycée Le Dantec

- pendule simple : utiliser la conservation de l'énergie mécanique pour calculer la vitesse pour un angle donné.
- chute libre : savoir établir l'équation du mouvement à partir du TPM, puis calculer le temps de chute.
- Mouvement non conservatif : chute verticale avec frottements visqueux.
 - Établir l'équation du mouvement à l'aide du TPM en admettant la valeur de la puissance $-\alpha v^2$.
 - Résoudre l'équation du mouvement (savoir résoudre une équation différentielle linéaire d'ordre 1 à coefficient constant).
 - \bullet Interprétation de la courbe obtenue : vitesse limite, temps caractéristique $\tau.$
 - Calcul direct de la vitesse limite
- Mouvement non conservatif: chute verticale avec frottements quadratiques.
 - Établir l'équation du mouvement en admettant la valeur de la puissance $-\beta v^3$
 - Détermination de la vitesse limite et estimation du temps caractéristique par analyse dimensionnelle.

$Extrait\ du\ programme$:

3. Énergie mécanique	
Énergie mécanique	Distinguer une énergie cinétique d'une énergie potentielle.
Conservation de l'énergie	Identifier les cas de conservation de l'énergie mécanique.
	Déduire d'un graphe d'énergie potentielle ou d'une expression d'une énergie
	mécanique une vitesse ou une position en des points particuliers.
	Déduire d'un graphe d'énergie potentielle le comportement borné ou non de
	la trajectoire.
Non conservation de l'énergie mécanique	Distinguer force conservative et force non conservative. Reconnaître les cas
Modèle d'ordre 1	de conservation de l'énergie mécanique.
	Énoncer le théorème liant l'énergie mécanique à la puissance des forces non
	conservatives.
	Étudier un système modélisé par une équation différentielle linéaire d'ordre 1
	à coefficients constants; interprétation qualitative du temps caractéristique.
	Exploiter numériquement une interaction dissipative amenant à une équa-
	tion différentielle linéaire ou non linéaire.

M4 - Oscillations libres (cours)

Connaissance préalable : signal sinusoïdal

- amplitude, phase, pulsation, fréquence, période d'un signal sinusoïdal. Connaître les relations

$$f = \frac{1}{T}$$
 $\omega = \frac{2\pi}{T} = 2\pi f$

- connaître les valeurs moyennes :

 $\langle \cos(\omega t + \varphi) \rangle = \langle \sin(\omega t + \varphi) \rangle = 0; \ \langle \cos^2(\omega t + \varphi) \rangle = \langle \sin^2(\omega t + \varphi) \rangle = 1/2.$

- valeur efficace d'un signal. Cas d'un signal sinusoïdal.
- formes équivalentes : $x(t) = x_m \cos(\omega t + \varphi) = A \cos \omega t + B \sin \omega t$. Savoir passer d'une forme à l'autre.
- connaître le lien entre mouvement sinusoïdal et projection d'un mouvement circulaire uniforme.

Oscillations libres

- savoir déduire graphiquement d'un potentiel harmonique l'amplitude des oscillations et la vitesse en un point donné connaissant la valeur de l'énergie mécanique.
- savoir établir l'équation du mouvement horizontal sans frottement d'un système masse-ressort sous la forme

$$\ddot{x} + \omega_0^2 x = 0$$
 avec $\omega_0 = \sqrt{\frac{k}{m}}$

et connaître sa solution : $x(t) = A \cos \omega_0 t + B \sin \omega_0 t = x_m \cos(\omega t + \varphi)$. Savoir déduire A et B des conditions initiales en position et en vitesse.