{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Guide d'onde\n", "\n", "### TD EM8b exercice 1\n", "\n", "On considère la propagation d'une onde électromagnétique entre deux plans conducteurs parfaits $y=0$ et $y=a$.\n", "On suppose l'onde polarisée suivant $\\vec{u}_z$ et on cherche des solutions de l'équation de d'Alembert sous la forme:\n", "\n", "$$\\vec{\\underline{E}}=\\left[\n", "Ae^{{\\rm i}k_2 y} +Be^{-{\\rm i}k_2 y}\n", "\\right]\n", "e^{{\\rm i}(\\omega t - k_1 x)}\n", "\\vec{u}_z=E_z(x,y,z,t)\\vec{u}_z$$\n", "\n", "La composante tangentielle du champ électrique s'annule à la surface du conducteur. Cela impose les deux conditions aux limites:\n", "\n", "$\\forall t \\quad \\forall x \\quad \\forall z$ \n", "\n", "$E_z(x,0,z,t)=0$\n", "\n", "$E_z(x,a,z,t)=0$\n", "\n", "On en déduit \n", "\n", "$$\\vec{\\underline{E}}=-2A\\sin(n\\frac{\\pi}{a}y)\\sin(\\omega t - k_1 x)\\vec{u}_z \\quad n\\in \\mathbb{N}^*$$\n", "\n", "avec $k_1=\\sqrt{\\left(\\frac{\\omega}{c}\\right)^2-n^2\\frac{\\pi^2}{a^2}}$\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%display latex\n", "a=0.1\n", "omega=2*pi*5*10^9 # on prend une fréquence de 5 GHz (deux modes possible: 1 et 2)\n", "c=3e8" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "\\begin{math}\n", "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(x, y, n, t\\right)\n", "\\end{math}" ], "text/plain": [ "(x, y, n, t)" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "var('x,y,n,t')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "\\begin{math}\n", "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\sqrt{-100.000000000000 \\, \\pi^{2} n^{2} + 1111.11111111111 \\, \\pi^{2}}\n", "\\end{math}" ], "text/plain": [ "sqrt(-100.000000000000*pi^2*n^2 + 1111.11111111111*pi^2)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "k1=sqrt((omega/c)^2-(n*pi/a)^2);k1" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/latex": [ "\\begin{math}\n", "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left( x, y, n, t \\right) \\ {\\mapsto} \\ -0.0200000000000000 \\, \\sin\\left(10.0000000000000 \\, \\pi n y\\right) \\sin\\left(10000000000 \\, \\pi t - \\sqrt{-100.000000000000 \\, \\pi^{2} n^{2} + 1111.11111111111 \\, \\pi^{2}} x\\right)\n", "\\end{math}" ], "text/plain": [ "(x, y, n, t) |--> -0.0200000000000000*sin(10.0000000000000*pi*n*y)*sin(10000000000*pi*t - sqrt(-100.000000000000*pi^2*n^2 + 1111.11111111111*pi^2)*x)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Ez(x,y,n,t)=-0.02*sin(n*pi*y/a)*sin(omega*t-k1(n)*x);Ez" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Mode n=1 " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "borne1=2*pi/k1(1) " ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "Graphics3d Object" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot3d(Ez(x,y,1,0), (x,0,3*borne1) ,(y,0,a))" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "T=2*pi/omega" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "mode1=animate([plot3d(Ez(x,y,1,k*0.05*T), (x,0,3*borne1) ,(y,0,a),\n", " axes_labels=['x','y','Ez']) for k in range(20)]).interactive()\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "Graphics3d Object" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show(mode1,delay=5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Mode n=2" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "borne2=2*pi/k1(2)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "mode2=animate([plot3d(Ez(x,y,2,k*0.05*T), (x,0,3*borne2) ,(y,0,a),\n", " axes_labels=['x','y','Ez']) for k in range(20)]).interactive()\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n" ], "text/plain": [ "Graphics3d Object" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show(mode2,delay=5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.2", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }